Definitions & Terminology
About Piezoceramics
Piezoelectric ceramics are, after firing, composed of small grains (crystallites), each containing domains in which the electric dipoles are aligned. These grains and domains are randomly oriented, so the net electric dipole is zero, i.e. the ceramics do not exhibit piezoelectric properties. The application of sufficiently strong D. C. field will orient the domains in the field direction, as nearly as the orientation of the crystal axes allows. This ability to change the orientation of the domains and achieve a net polarization is called ferroelectricity. A remanent polarization can be created in ferroelectric ceramics by polarization. After the poling process is complete, a voltage with the same polarity as the poling voltage causes expansion along the poling axis and contraction perpendicular to the poling axis. Compressive or tensile forces applied to the ceramic element will generate a voltage.